Abstract
Recently there has been a strong trend to fabricate smaller photonic devices. In the literature, the problem of coupling optical fibres with thin semiconductor waveguides has not been solved sufficiently well to obtain both high coupling efficiency and good fabrication tolerances. This paper discusses a new approach, the Dual Grating-Assisted Directional Coupling (DGADC), which can result in a robust and very efficient device, with relaxed fabrication tolerances. Theoretical investigation of the coupler is presented. Coupling efficiency and device length are determined as functions of layer thicknesses and refractive indices, grating periods, depths and duty ratios, and finally wavelength. Fabrication of the coupler is also given, as well as preliminary experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.