Abstract

In this work, we present a novel, theoretical approach to address one of the longstanding problems in computer vision: 2D and 3D affine invariant feature matching. Our proposed Grassmannian Graph (GrassGraph) framework employs a two stage procedure that is capable of robustly recovering correspondences between two unorganized, affinely related feature (point) sets. In the ideal case, the first stage maps the feature sets to an affine invariant Grassmannian representation, where the features are mapped into the same subspace. It turns out that coordinate representations extracted from the Grassmannian differ by an arbitrary orthonormal matrix. In the second stage, by approximating the Laplace-Beltrami operator (LBO) on these coordinates, this extra orthonormal factor is nullified, providing true affine invariant coordinates which we then utilize to recover correspondences via simple mutual nearest neighbor relations. Our validation benchmarks use large number of experimental trials performed on 2D and 3D datasets. Experimental results show that the proposed GrassGraph method successfully recovers large affine transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.