Abstract

This paper presents a greedy randomized adaptive search procedure (GRASP) to reconstruct aircraft routings in response to groundings and delays experienced over the course of the day. Whenever the schedule is disrupted, the immediate objective of the airlines is to minimize the cost of reassigning aircraft to flights taking into account available resources and other system constraints. Associated costs are measured by flight delays and cancellations. In the procedure, the neighbors of an incumbent solution are generated and evaluated, and the most desirable are placed on a restricted candidate list. One is selected randomly and becomes the incumbent. The heuristic is polynomial with respect to the number of flights and aircraft. This is reflected in our computational experience with data provided by Continental Airlines. Empirical results demonstrate the ability of the GRASP to quickly explore a wide range of scenarios and, in most cases, to produce an optimal or near-optimal solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.