Abstract

The synthesis of graphyne has been considered challenging, especially when it comes to adopting new topologies and obtaining thinner layers. Herein, we report the synthesis and characterization of a graphyne-like porous carbon-rich network via alkyne metathesis reactions, which resulted in a sp2/sp hybridized 2D thin film structure with a layer to layer distance of 0.37 nm. This graphyne-like porous carbon-rich network is an n-type semiconductor with a low work function of 3.9 eV and a reduction potential of -0.54 V vs. SHE, which could be applied as an excellent reducing agent for metal electroless deposition. In addition, this material has a narrow pore size distribution of 2 to 4 nm, a high surface area of 675 m2 g-1 and a large pore volume of 0.795 cm3 g-1 favoring gas adsorption. It shows the selective absorption of CO2 over N2 owing to the strong affinity between CO2 and the carbon-carbon triple bond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call