Abstract
This paper deals with the problem of global exponential stability for bidirectional associate memory (BAM) neural networks with time-varying delays and reaction-diffusion terms. By using some inequality techniques, graph theory as well as Lyapunov stability theory, a systematic method of constructing a global Lyapunov function for BAM neural networks with time-varying delays and reaction-diffusion terms is provided. Furthermore, two different kinds of sufficient principles are derived to guarantee the exponential stability of BAM neural networks. Finally, a numerical example is carried out to demonstrate the effectiveness and applicability of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.