Abstract
We present an algebraic graph-theoretic approach for quantification of surface morphology. Using this approach, heterogeneous, multi-scaled aspects of surfaces; e.g., semiconductor wafers, are tracked from optical micrographs as opposed to reticent profile mapping techniques. Therefore, this approach can facilitate in situ real-time assessment of surface quality. We report two complementary methods for realizing graph-theoretic representation and subsequent quantification of surface morphology variations from optical micrograph images. Experimental investigations with specular finished copper wafers (surface roughness (Sa) ∼ 6 nm) obtained using a semiconductor chemical mechanical planarization process suggest that the graph-based topological invariant Fiedler number (λ2) was able to quantify and track variations in surface morphology more effectively compared to other quantifiers reported in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.