Abstract

Fluorescence resonance energy transfer (FRET), which occurs between two luminescent chromophores, can greatly improve the selectivity and sensitivity of a fluorescent assay when a ratiometric signaling with the fluorescence enhancement of the acceptor at the expense of the donor is adopted. In this study, a fluorescence ratiometric detection (FRD) of riboflavin (RF) has been made based on FRET, as the strong overlap occurred between the emission spectrum of graphitic carbon nitride (g-C3N4) and absorption spectrum of RF, in which g-C3N4 acts as the energy donor and RF as the energy acceptor. With increasing concentration of RF, the fluorescence intensity of g-C3N4 emission at 444nm decreased and the fluorescence peak at 523nm for RF increased regularly, making the fluorescence intensity ratio of 523nm to 444nm linearly dependent on the concentration of RF in the range from 0.4μM to 10μM, giving a limit of the detection of 170nM. This method can be used to quantify RF in complex systems such as milk and drink, showing that the novel FRET-based fluorescence ratiometric detection can enable an attractive assay platform for analytes of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.