Abstract

A disposable nonenzymatic glucose sensor was obtained by pulsed electrodeposition of Pt-CuO on a graphite pencil electrode (GPE). The morphology of the modified GPE was studied using SEM, and the chemical composition of the coating was examined by EDAX and XRD. The electrochemical response of the modified GPE was compared with individual copper- and platinum-modified GPEs. The electrodeposition parameters were optimized with respect to the electrocatalytic activity of the deposits towards glucose oxidation. Best operated at a working potential of 0.6V vs. Ag/AgCl, the sensor has a sensitivity of 2035μAmM-1cm-2, a 0.1μM detection limit and a wide linear response range that extends up to 25mM. It is highly selective for glucose in the presence of various exogenous and endogenous interfering species. Eventhough the requirement of alkaline medium for sensing is a limitation, easy fabrication procedure, very high sensitivity and selectivity, wide analytical range, and disposable sensor characteristics show potential application towards blood glucose determination. Graphical abstractSchematic representation of the Pt-CuO electrodeposited pencil graphite electrode for the nonenzymatic determination of glucose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.