Abstract
In this paper, a graphical characterization, in the decision space, of the properly efficient solutions of a convex multiobjective problem is derived. This characterization takes into account the relative position of the gradients of the objective functions and the active constraints at the given feasible solution. The unconstrained case with two objective functions and with any number of functions and the general constrained case are studied separately. In some cases, these results can provide a visualization of the efficient set, for problems with two or three variables. Besides, a proper efficiency test for general convex multiobjective problems is derived, which consists of solving a single linear optimization problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.