Abstract

A traditional input-shaping technique is adapted to control transfer maneuvers on quay-side container cranes. The controller is developed using an accurate two-dimensional four-bar-mechanism model of a container crane and accounts for maneuvers that involve large hoisting operations. A graphical representation of the phase plane of the payload oscillations is used to derive mathematical constraints to compute the switching times of a double-step acceleration profile that results in minimal transient and residual oscillations. In contrast with single-step shaped acceleration profiles which are very sensitive to frequency approximations, the proposed double-step profile is less sensitive to small variations in the frequency even for large trolley accelerations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.