Abstract

Flexible and stretchable sensors are emerging and promising wearable devices for motion monitoring. Manufacturing a flexible and stretchable strain sensor with desirable electromechanical performance and excellent skin compatibility plays an essential role in building a smart wearable system. In this paper, a graphene-coated silk-spandex (GCSS) fabric strain sensor is prepared by reducing graphene oxide. The sensor functions as a result of conductive fiber extending and woven structure deforming. The conductive fabric can be stretched towards 60% with high sensitivity, and its performance remains constant after a 1000-cycle test. Based on its superior performance, the GCSS is successfully employed to detect full-range human movement and provide data for deep learning-based gesture recognition. This work offers a desirable method to fabricate low-cost strain sensors for industrial applications such as human movement detection and advanced information science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.