Abstract

Films with micro/nanostructures that show high wicking performance are promising in water desalination, atmospheric water harvesting, and thermal energy management systems. Here, we use a facile bubble-induced self-assembly method to directly generate films with a nanoengineered crack-like surface on the substrate during bubble growth when self-dispersible graphene quantum dot (GQD) nanofluid is used as the working medium. The crack-like micro/nanostructure, which is generated due to the thermal stress, enables the GQD film to not only have superior capillary wicking performance but also provide many additional nucleation sites. The film demonstrates enhanced phase change-based heat transfer performance, with a simultaneous enhancement of the critical heat flux and heat transfer coefficient up to 169% and 135% over a smooth substrate, respectively. Additionally, the GQD film with high stability enables a performance improvement in the concentration ratio and electrical efficiency of concentrated photovoltaics in an analytical study, which is promising for high-power thermal energy management applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.