Abstract
We have developed a label-free, simple and highly sensitive hairpin fluorescent biosensor for the assay of DNA 3'-phosphatases and their inhibitors utilizing a graphene oxide (GO) platform. In this assay, we designed a hairpin primer (HP) with a 3'-phosphoryl end that served as the substrate for DNA 3'-phosphatases. Once the phosphorylated HP was hydrolyzed by DNA 3'-phosphatases, the resulting HP with a 3'-hydroxyl end was immediately elongated to form a long double-strand product by Klenow fragment polymerase (KF polymerase). With SYBR green I (SG) selective staining of the double-helix DNA, a very high fluorescence enhancement was achieved. Furthermore, GO was introduced to quench the fluorescence of the HP without polymerase elongation, thereby further increasing the signal-to-background ratio. The proposed method is simple and convenient, yet still exhibits high sensitivity and selectivity. This method has been successfully applied to detecting the activity of two typical 3'-phosphatases, T4 polynucleotide kinase phosphatase (PNKP) and shrimp alkaline phosphatase (SAP). The effect of their inhibitors has also been investigated. The results revealed that the method allowed a sensitive quantitative assay of T4 PNKP and SAP, with detection limits of 0.07 U mL-1 and 0.003 U mL-1, respectively. The proposed method is anticipated to find applications in the study of DNA damage repair mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.