Abstract

The traditional method of preparing graphene will cause serious environmental pollution, and the combustion of polymer materials will seriously harm people's health. In this paper, a Cu-MOF-coated graphene composite flame retardant (G@Cu-MOF) rich in flame retardant elements such as B and N was synthesized through green mechanical ball milling method. Flame retardants reduce the threat to the environment and people's lives and property. After adding 6 wt% G@Cu-MOF, the peak heat release rate, total heat release rate, CO production and CO2 production of epoxy resin (EP) composite samples decreased by 55, 14, 59, and 55%, respectively. This type of Cu-MOF releases incombustible gases such as boron trifluoride (BF3) and ammonia (NH3) during combustion, diluting the concentration of combustible gases and producing copper borate in the condensed phase. Cu2+ is reduced to Cu, and boron compounds are converted into boron oxides. The thermal conductivity of graphene can reduce the temperature of the matrix, and has good flame retardancy. It synergistically acts with Cu-MOF to promote the formation of high-quality residual char, and can significantly inhibit the heat and smoke release of EP. It plays a role in flame retardancy and protecting the substrate from fire. This study provides a new approach for preparing graphene hybrid flame retardants through mechanical ball milling, in order to improve the flame retardancy of EP and suppress the release of smoke and toxic gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call