Abstract
Postoperative peritoneal adhesion (PPA) is the most frequent complication after abdominal surgery. Current anti-adhesion strategies largely rely on the use of physical separating barriers creating an interface blocking peritoneal adhesion, which cannot reduce inflammation and suffers from limited anti-adhesion efficacy with unwanted side effects. Here, by exploiting the alternative activated macrophages to alleviate inflammation in adhesion development, a flexible graphene-composite-film (F-GCF) generating far-infrared (FIR) irradiation that effectively modulates the macrophage phenotype toward the anti-inflammatory M2 type, resulting in reduced PPA formation, is designed. The anti-adhesion effect of the FIR generated by F-GCF is determined in the rat abdominal wall abrasion-cecum defect models, which exhibit reduced incidence and area of PPA by 67.0% and 92.1% after FIR treatment without skin damage, significantly superior to the clinically used chitosan hydrogel. Notably, within peritoneal macrophages, FIR reduces inflammation reaction and promotes tissue plasminogen activator (t-PA) level via the polarization of peritoneal macrophages through upregulating Nr4a2 expression. To facilitate clinical use, a wirelessly controlled, wearable, F-GCF-based FIR therapy apparatus (GRAFT) is further developed and its remarkable anti-adhesion ability in the porcine PPA model is revealed. Collectively, the physical, biochemical, and in vivo preclinical data provide compelling evidence demonstrating the clinical-translational value of FIR in PPA prevention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.