Abstract

A three-dimensional graphene-based composite was prepared by a simple one-step in-site reduced-oxide method under atmospheric pressure. The obtained hydrogel was modified with 4-amino-benzenesulfonic acid and connected with ethylenediamine, and freeze-dried into an aerogel, which was characterized. Then the surface interaction with platinum (Pt, IV) was explored. The obtained aerogel showed good adsorption for Pt (IV) at acid conditions, giving a rising to the adsorption rate > 98% while pH ≥ 6. Using hexadecyl trimethyl ammonium bromide of 2% (m/V) as an eluent to desorb the Pt (IV) from the surface of the aerogel, a desorption rate of 81.1% was obtained in this process. Urea, buffer aquation and other surfactants were used in the desorption experiment to understand the adsorption mechanism between the aerogel and Pt (IV). In this work, hydrogen bond, van der Waals force and electronic interaction force mainly drove the adsorption process. For obtaining more purified Pt (IV), we used 0.5% CTAB to desorb Pd (II). A new three-dimensional graphene-based composite was prepared and the surface interaction between Pt (IV) and composite was experimented for understanding the adsorption mechanism and exploring its potential application in sample preparation in low concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call