Abstract

Content-Based Image Retrieval (CBIR) is an important problem in the domain of digital data management. There is indeed a growing availability of images, but unfortunately the traditional metadata-based search systems are unable to properly exploit their visual information content. In this article we introduce a novel CBIR scheme that abstracts each image in the database in terms of statistical features computed using the Multi-scale Geometric Analysis (MGA) of Non-subsampled Contourlet Transform (NSCT). Noise resilience is one of the main advantages of this feature representation. To improve the retrieval performance and reduce the semantic gap, our system incorporates a Relevance Feedback (RF) mechanism that uses a graph-theoretic approach to rank the images in accordance with the user’s feedback. First, a graph of images is constructed with edges reflecting the similarity of pairs of images with respect to the proposed feature representation. Then, images are ranked at each feedback round in terms of the probability that a random walk on this graph reaches an image tagged as relevant by the user before hitting a non-relevant one. Experimental analyses on three different databases show the effectiveness of our algorithm compared to state-of-the-art approaches in particular when the images are corrupted with different types of noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.