Abstract

In ambient-assisted living facilitated by smart home systems, the recognition of daily human activities is of great importance. It aims to infer the household's daily activities from the triggered sensor observation sequences with varying time intervals among successive readouts. This paper introduces a novel deep learning framework based on embedding technology and graph attention networks, namely the time-oriented and location-oriented graph attention (TLGAT) networks. The embedding technology converts sensor observations into corresponding feature vectors. Afterward, TLGAT provides a sensor observation sequence as a fully connected graph to the model's temporal correlation as well as the sensor's location correlation among sensor observations and facilitates the feature representation of each sensor observation through receiving other sensor observations and weighting operations. The experiments were conducted on two public datasets, based on the diverse setups of sensor event sequence length. The experimental results revealed that the proposed method achieved favorable performance under diverse setups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call