Abstract
An induced subgraph S of a graph G is called a derived subgraph of G if S contains no isolated vertices. An edge e of G is said to be residual if e occurs in more than half of the derived subgraphs of G. We introduce the conjecture: Every non-empty graph contains a non-residual edge. This conjecture is implied by, but weaker than, the union-closed sets conjecture. We prove that a graph G of order n satisfies this conjecture whenever G satisfies any one of the conditions: δ(G) ≤ 2, log2n ≤ δ(G), n ≤ 10, or the girth of G is at least 6. Finally, we show that the union-closed sets conjecture, in its full generality, is equivalent to a similar conjecture about hypergraphs. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 155–163, 1997
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.