Abstract

Consider a network vulnerable to viral infection, where the security software can guarantee safety only to a limited part of it. We model this practical network scenario as a non-cooperative multi-player game on a graph, with two kinds of players, a set of attackers and a protector player, representing the viruses and the system security software, respectively. We are interested in the associated Nash equilibria, where no network entity can unilaterally improve its local objective. We obtain the following results: for certain families of graphs, mixed Nash equilibria can be computed in polynomially time. These families include, among others, regular graphs, graphs with perfect matchings and trees. The corresponding price of anarchy for any mixed Nash equilibria of the game is upper and lower bounded by a linear function of the number of vertices of the graph. (We define the price of anarchy to reflect the utility of the protector). Finally, we introduce a generalised version of the game. We show that the existence problem of pure Nash equilibria here is NP complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.