Abstract
It is well-known that every proof net of a non-commutative version of MLL (Multiplicative fragment of Commutative Linear Logic) can be drawn as a plane Danos-Regnier graph (drawing) satisfying the switching condition of Danos-Regnier [3]. In this paper, we study the reverse direction; we introduce a system MNCLL logically equivalent to the multiplicative fragment of Cyclic Linear Logic introduced by Yetter [9], and show that any plane Danos-Regnier graph drawing satisfying the switching condition represents a unique non-commutative proof net (i.e., a proof net of MNCLL) modulo cyclic shifts. In the course of proving this, we also give the characterization of the non-commutative proof nets by means of the notion of strong planity, as well as the notion of a certain long-trip condition, called the stack-condition, of a Danos-Regnier graph, the latter of which is related to Abrusci balanced long-trip condition [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.