Abstract

We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings, the number of perfect matchings, and, for bipartite graphs, the number of independent sets (#BIS). We analyze the complexity of exact evaluation of the polynomial at rational points and show a dichotomy result---for most points exact evaluation is #P-hard (assuming the generalized Riemann hypothesis) and for the rest of the points exact evaluation is trivial. We propose a natural Markov chain to approximately evaluate the polynomial for a range of parameters. We prove an upper bound on the mixing time of the Markov chain on trees. As a by-product we show that the ``single bond flip'' Markov chain for the random cluster model is rapidly mixing on constant tree-width graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.