Abstract

Network slicing has emerged as a promising networking paradigm to provide resources tailored for Industry 4.0 and diverse services in 5G networks. However, the increased network complexity poses a huge challenge in network management due to virtualized infrastructure and stringent quality-of-service requirements. Digital twin (DT) technology paves a way for achieving cost-efficient and performance-optimal management, through creating a virtual representation of slicing-enabled networks digitally to simulate its behaviors and predict the time-varying performance. In this article, a scalable DT of network slicing is developed, aiming to capture the intertwined relationships among slices and monitor the end-to-end (E2E) metrics of slices under diverse network environments. The proposed DT exploits the novel graph neural network model that can learn insights directly from slicing-enabled networks represented by non-Euclidean graph structures. Experimental results show that the DT can accurately mirror the network behaviour and predict E2E latency under various topologies and unseen environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call