Abstract

Genomic selection is revolutionizing both plant and animal breeding, with its practical application depending critically on high prediction accuracy. In this study, we aimed to enhance prediction accuracy by exploring the use of graph models within a linear mixed model framework. Our investigation revealed that incorporating the graph constructed with line connections alone resulted in decreased prediction accuracy compared to conventional methods that consider only genotype effects. However, integrating both genotype effects and the graph structure led to slightly improved results over considering genotype effects alone. These findings were validated across 14 datasets commonly used in plant breeding research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.