Abstract
A graph matching approach is proposed in this paper for solving the task assignment problem encountered in distributed computing systems. A cost function defined in terms of a single unit, time, is proposed for evaluating the effectiveness of task assignment. This cost function represents the maximum time for a task to complete module execution and communication in all the processors. A new optimization criterion, called the minimax criterion, is also proposed, based on which both minimization of interprocessor communication and balance of processor loading can be achieved. The proposed approach allows various system constraints to be included for consideration. With the proposed cost function and the minimax criterion, optimal task assignment is defined. Graphs are then used to represent the module relationship of a given task and the processor structure of a distributed computing system. Module assignment to system processors is transformed into a type of graph matching, called weak homomorphism. The search of optimal weak homomorphism corresponding to optimal task assignment is next formulated as a state-space search problem. It is then solved by the well-known A* algorithm in artificial intelligence after proper heuristic information for speeding up the search is suggested. An illustrative example and some experimental results are also included to show the effectiveness of the heuristic search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.