Abstract
In metabolomics study, it is not easy to extract the metabolites from data of ultra high-performance liquid chromatography-high-resolution mass spectrometry, especially for those with low abundance. Different software for peak recognition and matching use different algorithms, leading to different extract results. Therefore, integration of results from different software can obtain richer metabolome information, but the redundant features should be removed. In this study, an integrated strategy of fusing features and removing redundancy based on graph density (FRRGD) was proposed. A graph is used to cover the ion features generated by two open access software (XCMS, MZmine 2) and a software (SIEVE) from an instrument vendor, and redundant features were removed by searching the maximal complete sub-graphs. A standard mixture containing 41 metabolites and a spontaneous urine were utilized to develop the method and demonstrate its usefulness. For the standard mixture, 19, 19 and 27 metabolites were extracted by XCMS, MZmine 2 and SIEVE, respectively. After fusion by FRRGD, 37 metabolites were obtained. For the diluted spontaneous urine sample, 1103, 1500 and 387 metabolites were extracted by XCMS, MZmine 2 and SIEVE, respectively, FRRGD produced 1619 metabolites which were much more than individual software, significantly increasing metabolome coverage. The proposed FRRGD shows a great prospect as a new data processing strategy for metabolomics study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.