Abstract

Appropriately routing pipes poses a considerable challenge to complex product developments such as aero-engine engineering. This paper presents a graph-based routing algorithm that tries to find the shortest collision-free pipe paths in an aero-engine's circumferential space between the hub and the casing. The routing algorithm extends the visibility graph originally used for robot path planning in 2D spaces to aero-engine's 3D circumferential spaces by incorporating geodesics and a number of engineering rules. Subsequently, this paper presents two adaptive strategies to automatically determine the circumferential layers and regions, on which pipes are to be routed. Pipe configurations with shortest total lengths are further found by using a graph searching algorithm. Finally, numerical computations have shown that the proposed routing algorithm outperforms previous algorithms in terms of pipe lengths and computation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.