Abstract

Cancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway being studied, followed by a graph-based multivariate test, which is very easy to implement in practice. The new test is applied to the rich Cancer Genome Atlas data to study the (epi)genetic alterations of 186 KEGG pathways in the development of serous ovarian cancer. To make use of the comprehensive data, we incorporate three data types in the analysis representing gene expression level, copy number and DNA methylation level. Our analysis suggests a list of nine pathways that are closely associated with serous ovarian cancer progression, including cell cycle, ERBB, JAK-STAT signaling and p53 signaling pathways. By pairwise tests, we found that most of the identified pathways contribute only to a particular transition step. For instance, the cell cycle and ERBB pathways play key roles in the early-stage transition, while the ECM receptor and apoptosis pathways contribute to the progression from stage III to stage IV. The proposed computational pipeline is powerful in detecting important pathways and gene sets that drive cancers at certain stage(s). It offers new insights into the understanding of molecular mechanism of cancer initiation and progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call