Abstract

An EEG-based Brain-Computer Interface (BCI) is a system that enables a user to communicate with and intuitively control external devices solely using the user's intentions. Current EEG-based BCI research usually involves a subject-specific adaptation step before a BCI system is ready to be employed by a new user. However, the subject-independent scenario, in which a well-trained model can be directly applied to new users without pre-calibration, is particularly desirable yet rarely explored. Considering this critical gap, our focus in this paper is the subject-independent scenario of EEG-based human intention recognition. We present a G raph-based H ierarchical A ttention M odel (G-HAM) that utilizes the graph structure to represent the spatial information of EEG sensors and the hierarchical attention mechanism to focus on both the most discriminative temporal periods and EEG nodes. Extensive experiments on a large EEG dataset containing 105 subjects indicate that our model is capable of exploiting the underlying invariant EEG patterns across different subjects and generalizing the patterns to new subjects with better performance than a series of state-of-the-art and baseline approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.