Abstract

Mining association rules is an important task for knowledge discovery. We can analyze past transaction data to discover customer behaviors such that the quality of business decisions can be improved. Various types of association rules may exist in a large database of customer transactions. The strategy of mining association rules focuses on discovering large item sets, which are groups of items which appear together in a sufficient number of transactions. We propose a graph-based approach to generate various types of association rules from a large database of customer transactions. This approach scans the database once to construct an association graph and then traverses the graph to generate all large item sets. Empirical evaluations show that our algorithms outperform other algorithms which need to make multiple passes over the database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.