Abstract

A novel granular discrete element method (DEM) is introduced to simulate mixtures of particles of any convex shape. To quickly identify pairs of particles in contact, the method first uses a broad-phase and a narrow-phase contact detection strategy. After this, a contact resolution phase finds the contact normal and penetration depth. A new algorithm is introduced to effectively locate the contact point in the geometric center of flat faces in partial contact. This is important for a correct evaluation of the torque on each particle, leading to a much higher stability of stacks of particles than with previous algorithms. The granular DEM is used to generate random packings in a cylindrical vessel. The simulated shapes include non-spherical particles with different aspect ratio cuboids, cylinders and ellipsoids. More complex polyhedral shapes representing sand and woodchip particles are also used. The latter particles all have a unique shape and size, resembling real granular particle packings. All packings are analyzed extensively by investigating positional and orientational ordering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.