Abstract

A grain boundary engineering approach was made to improve the microstructure of a commercial Pb-base alloy for better performance in automobile battery application. For the purpose of enhancing the resistance against intergranular corrosion, cracking and creep, a thermomechanical processing route was sought to promote special boundaries, specifically coincidence site lattice (CSL) boundaries. Through a combination of cold working and recrystallization heat treatment, it was possible to increase the fraction of low ΣCSL boundaries more than 91%. Annealing twins, produced during the thermomechanical processing, were identified as a key factor for regeneration of CSL boundaries. Multiplication of the CSL boundaries was interpreted in terms of the ‘ Σ3 regeneration’ model proposed by previous authors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.