Abstract
Bottlebrush polymers with optoelectronic function show promise for applications in photonic crystals, nanomedicine, and encoding of information. In particular, bottlebrush polymers formed from organic semiconductors give wire-like nanoparticles where band gaps, fluorescence, and energy transfer can be tuned. To date, such bottlebrush polymers have largely been prepared by grafting-through polymerization of organic semiconductor macromonomers, where pre-synthesized side chains are polymerized along a bottlebrush backbone. While this approach provides high side-chain grafting densities, the length of bottlebrush polymers that is possible to obtain is limited by steric crowding at the propagating chain end. Here, we describe methods for preparing ultralong bottlebrush nanofibers from organic semiconductors, with backbone lengths approaching 800 repeating units and molecular weights in excess of 4 MDa. By combining reversible addition fragmentation chain transfer and Cu(0) reversible deactivation radical polymerization, a “grafting-from” protocol is described where monomers can be grown from a pre-synthesized backbone. Bottlebrush polymers were prepared from organic semiconductors used as n-type, p-type, and host materials in multilayer organic devices. Finally, a two-component bottlebrush polymer exhibiting deep blue emission, two-photon fluorescence, and a quantum yield of unity is also prepared by this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.