Abstract

This paper presented a Gradient Weighted Finite Element Method (GW-FEM) for solving electromagnetic problems. First, the analysis domain is discretized into a set of triangular or tetrahedral elements which are easy to automatically generate. Then, Gradient Weighted influence domains are further constructed by the center element with all the adjacent elements. The Galerkin Weak form is evaluated based on these influence domains. The GW-FEM is employed here for the solution of static and quasi-static electromagnetic problems by using linear triangular or tetrahedral elements. All the properties of GW-FEM are proved theoretically and analyzed in detail. Consistency between four benchmark results is obtained by GW-FEM and analytical results verify the accuracy, stability, and potential of this method. It turns out that GW-FEM possesses potentials in the applications of electromagnetic problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.