Abstract

We study a production planning problem of product assembly with random demand, where the customers choose their preferred suppliers for pairs of inter-dependent components through the approved vendor matrix. The problem is to develop production plans that minimise the expected total shortage and holding costs while observing the matrix restrictions and limited component supplies. We provide a mathematical programming formulation of the problem with a large number of decision variables, whose cost function is the solution of a parametric stochastic transportation problem. We present a gradient-based interior-point approach to solve this problem where the gradient is estimated by the shadow price from the solution of such a transportation problem. A column generation scheme is integrated into the approach to handle the large problem issue. Computational results show that our algorithm significantly improves the computational time when compared with the approach without column generation. In addition, we also discuss some extensions of the basic problem to the multi-period rolling horizon case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.