Abstract
The High order Gradient Reproducing Kernel in conjunction with the Collocation Method (HGRKCM) is introduced for solutions of 2nd- and 4th-order PDEs. All the derivative approximations appearing in PDEs are constructed using the gradient reproducing kernels. Consequently, the computational cost for construction of derivative approximations reduces tremendously, basis functions for derivative approximations are smooth, and the accumulated error arising from calculating derivative approximations are controlled in comparison to the direct derivative counterparts. Furthermore, it is theoretically estimated and numerically tested that the same number of collocation points as the source points can be used to obtain the optimal solution in the HGRKCM. Overall, the HGRKCM is roughly 10–25 times faster than the conventional reproducing kernel collocation method. The convergence of the present method is estimated using the least squares functional equivalence. Numerical results are verified and compared with other strong-form-based and Galerkin-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.