Abstract
Many problems arising from machine learning, compressive sensing, linear inverse problem, and statistical inference involve finding sparse solutions to under-determined or ill-conditioned equations. In this paper, a gradient projection method is proposed to recover sparse signal in compressive sensing by solving the nonlinear convex constrained equations. The global convergence is established with the backtracking line search. Preliminary numerical experiments coping with the sparse signal reconstruction in compressive sensing are performed, which show that the proposed method is very effective and stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.