Abstract

In the present paper, we deal with the global regularity estimates for the $p$-Laplace equations with data in divergence form \[ \operatorname{div}(|\nabla u|^{p-2} \nabla u) = \operatorname{div}(|F|^{p-2} F) \quad \textrm{in $\Omega$}, \] in Morrey spaces with natural data $F \in L^p(\Omega;\mathbb{R}^n)$ and nonhomogeneous boundary data belongs to $W^{1,p}(\Omega)$. Motivated by the work of [M.-P. Tran, T.-N. Nguyen, New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data, J. Differential Equations 268 (2020), no. 4, 1427–1462], this paper extends that of global Lorentz–Morrey gradient estimates in which the `good-$\lambda$' technique was undertaken for a class of more general equations, and further, global regularity of weak solutions will be given in terms of fractional maximal operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.