Abstract

Most algorithms in probabilistic sampling-based path planning compute collision-free paths made of straight line segments lying in the configuration space. Due to the randomness of sampling, the paths make detours that need to be optimized. The contribution of this paper is to propose a basic gradient-based algorithm that transforms a polygonal collision-free path into a shorter one. While requiring only collision checking, and not any time-consuming obstacle distance computation nor geometry simplification, we constrain only part of the configuration variables that may cause a collision, and not entire configurations. Thus, parasite motions that are not useful for the problem resolution are reduced without any assumption. Experimental results include navigation and manipulation tasks, eg a manipulator arm-filling boxes and a PR2 robot working in a kitchen environment. Comparisons with a random shortcut optimizer and a partial shortcut have also been studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.