Abstract
A grade of membership (GoM) model is an individual level mixture model which allows individuals have partial membership of the groups that characterize a population. A GoM model for rank data is developed to model the particular case when the response data is ranked in nature. A Metropolis-within-Gibbs sampler provides the framework for model fitting, but the intricate nature of the rank data models makes the selection of suitable proposal distributions difficult. `Surrogate' proposal distributions are constructed using ideas from optimization transfer algorithms. Model fitting issues such as label switching and model selection are also addressed. The GoM model for rank data is illustrated through an analysis of Irish election data where voters rank some or all of the candidates in order of preference. Interest lies in highlighting distinct groups of voters with similar preferences (i.e. `voting blocs') within the electorate, taking into account the rank nature of the response data, and in examining individuals' voting bloc memberships. The GoM model for rank data is fitted to data from an opinion poll conducted during the Irish presidential election campaign in 1997.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.