Abstract

The penalty projection algorithm (PP), which decouples pressure from the momentum equation of incompressible Navier–Stokes Equation (NSE), is among the most conventional approaches to simulate fluid flows. In a fluid-fluid decoupling setting, however, PP has never been employed but offers the potential for being one of the most typical candidates to compute two NSE’s in each subdomain. Although pressure decoupling weakens the divergence constraint, the proposed algorithm operates with a well-known grad-div stabilization technique to retrieve this property. Theoretical and computational findings demonstrate how the proposed grad-div stabilized PP method settles concerns and outperforms when implemented with fluid-fluid decoupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.