Abstract

With the rapid increasing of network scale, the size of traffic data also expands a lot. In traditional traffic data analysis, there are some problems, such as high computation complexity, low analysis efficiency, long learning period, and difficulty of development. To address these problems, we design and implement a GPU-accelerated parallel analysis scheme for network traffic - EasyAnalyze. In EasyAnalyze, we introduce GPU parallel computing, Map/Reduce architecture into network traffic analysis, which greatly improves the efficiency but does not increase the difficulty in programming. In the experiments, EasyAnalyze shows very promising results: 1 the speed is 6-17 times faster than conventional serial analysis in network traffic data analysis; and 2 the size of code is only 2% of the mainstream GPU Map/Reduce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.