Abstract

Abstract Continuous constraint satisfaction is prevalent in many science and engineering fields. When solving continuous constraint satisfaction problems, it is more advantageous for practitioners to derive all feasible regions (i.e., the solution space) rather than a limited number of solution points, since these feasible regions facilitate design concept generation and design tradeoff evaluation. Several central processing unit (CPU)-based branch-and-prune methods and geometric approximation methods have been proposed in prior research to derive feasible regions for continuous constraint satisfaction problems. However, these methods have not been extensively adopted in practice, mainly because of their high computational expense. To overcome the computational bottleneck of extant CPU-based methods, this paper introduces a GPU-based parallel region classification method to derive feasible regions for continuous constraint satisfaction problems in a reasonable computational time. Using interval arithmetic, coupled with the computational power of GPU, this method iteratively partitions the design space into many subregions and classifies these subregions as feasible, infeasible, and indeterminate regions. To visualize these classified regions in the design space, a planar visualization approach that projects all classified regions into one figure is also proposed. The GPU-based parallel region classification method and the planar visualization approach are validated through two case studies about the bird function and the welded beam design. These case studies show that the method and the approach can solve the continuous constraint satisfaction problems and visualize the results effectively and efficiently. A four-step procedure for implementing the method and the approach in practice is also outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.