Abstract

The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.