Abstract

This work describes a novel robot manipulator with configurable platform. Three internal degrees-of-freedom are added for controlling the relative orientation of the terminal links supporting multiple end-effectors of a Gough–Stewart-type parallel manipulator. The instantaneous forward and inverse kinematic analyses of the robot are derived using the theory of screws. Furthermore, the exploitation of this approach for deriving the acceleration analyses of a parallel manipulator with configurable platform is novel in this research field. As an intermediate step the forward and inverse displacement analyses are also investigated. A numerical example is compared with the outcome of a commercial software demonstrating the approach correctness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call