Abstract
In this paper, we address the problem of cardinality estimation of XPath queries over XML data stored in a distributed, Internet-scale environment such as a large-scale, data sharing system designed to foster innovations in biomedical and health informatics. The cardinality estimate of XPath expressions is useful in XQuery optimization, designing IR-style relevance ranking schemes, and statistical hypothesis testing. We present a novel gossip algorithm called XGossip, which given an XPath query estimates the number of XML documents in the network that contain a match for the query. XGossip is designed to be scalable, decentralized, and robust to failures--properties that are desirable in a large-scale distributed system. XGossip employs a novel divide-and-conquer strategy for load balancing and reducing the bandwidth consumption. We conduct theoretical analysis of XGossip in terms of accuracy of cardinality estimation, message complexity, and bandwidth consumption. We present a comprehensive performance evaluation of XGossip on Amazon EC2 using a heterogeneous collection of XML documents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.