Abstract

The morphological features of 298 neurons impregnated according to Golgi-Kopsch in areas 17 and 18 of Macaca mulatta were analyzed, and the same neurons were deimpregnated to visualize structural details of the somata in different types of neurons. The following cell types were investigated: Pyramidal and pyramid-like cells, spiny stellate cells, double bouquet cells, bipolar cells, chandelier cells, neurogliaform cells, basket and related cells. This procedure allows the evaluation of the nuclear-cytoplasmic proportion and the position of the nucleus besides shape and size of the cell body. Pyramidal and pyramid-like cells (N = 43), spiny stellate cells (N = 26), basket and related cells (N = 126) are variable in these features. A positive correlation between soma size and width of the cytoplasm is found in pyramidal, pyramid-like cells and spiny stellate cells. With the exception of some large somata in both these types of neurons the nucleus is found in a central position. Double bouquet cells (N = 6), bipolar cells (N = 13) and chandelier cells (N = 11) exhibit small cytoplasmic rims and centrally located nuclei. The small somata of neurogliaform cells (N = 37), however, and the small to very large somata of basket and related cells show broad cytoplasmic portions surrounding the eccentrically located nuclei. These findings allow the identification of different neuronal types in Nissl-stained sections on the basis of these soma features. This is a prerequisite for further detailed quantitative studies on the laminar distribution of different neuronal types in the visual cortex of the monkey.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call