Abstract

Simple SummaryCancer stem cells (CSCs) play a crucial role in tumor development, metastasis, therapy resistance, and relapse due to their self-renewal and proliferative potential. In this review, we summarized the application of gold nanoparticle (AuNPs) bioconjugates in enhancing the efficiency of photodynamic therapy (PDT) in cancer and CSCs. We also highlighted the challenges facing the translation of AuNPs application in clinical settings.Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.