Abstract

We have developed a facile method for the preparation of a gold electrode modified with a flower-like gold nanostructure using potentiostatic electrodeposition. Its formation, morphology, and electrochemical properties were studied by scanning electron microscopy and cyclic voltammetry. The resulting nanostructures possess rough and enlarged surface areas and enable fast electron transfer in the selective and sensitive detection of ascorbic acid (AA) and dopamine (DA) in phosphate-buffered saline without disturbance by common interferents. The differential pulse voltammetry anodic peak currents at approximately −0.03 V and 0.16 V are strongly enhanced in the presence of AA and DA, respectively. The electrode responds linearly to AA in the concentration range from 60 μM to 500 μM, with a limit of detection at 10 μM. The respective data for DA are 1 μM to 150 μM, and the limit of detection is 0.2 μM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call