Abstract
We prove that if an extension R ⊆ T of commutative rings satisfies the going-up property (for instance, if T is an integral extension of R), then any increasing chain of prime ideals of R (indexed by an arbitrary linearly ordered set) is covered by some corresponding chain of prime ideals of T. As a corollary, we recover the recent result of Kang and Oh that any such chain of prime ideals of an integral domain D is covered by a corresponding chain in some valuation overring of D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.